Create your own Electricity at Home -It's Easy













Electrician shows you step by step how top build your own solar cells for under $100. Easy to follow guide and videos. Cut your electric bills by 75% or more.



Click here to watch video

Wednesday, September 30, 2015

New research puts us closer to DIY spray-on solar cell technology

September 30, 2015 by Arminta Plater
 
A new study out of St. Mary's College of Maryland puts us closer to do-it-yourself spray-on solar cell technology—promising third-generation solar cells utilizing a nanocrystal ink deposition that could make traditional expensive silicon-based solar panels a thing of the past.
In a 2014 study, published in the journal Physical Chemistry Chemical Physics, St. Mary's College of Maryland energy expert Professor Troy Townsend introduced the first fully solution-processed all-inorganic photovoltaic technology.
 

Stanford Engineers Develop Solar Cell Cooling Coating To Boost Efficiency

September 30th, 2015 by  
A report published by Stanford details the development of a novel cooling technology that its engineers claim can improve solar panel performance.
The outcome represents a solution to a long-standing problem in the field of photovoltaics; that at higher temperatures resultant from prolonged exposure to sunlight, solar cells become increasing inefficient at converting sunlight’s photons into electricity.

Tuesday, September 15, 2015

Discovery of a Highly Efficient Catalyst Eases Way to Hydrogen Economy

Discovery of a Highly Efficient Catalyst Eases Way to Hydrogen Economy

Tue, 09/15/2015 - 9:43am
University of Wisconsin-Madison
Bathed in simulated sunlight, this photoelectrolysis cell in the lab of Song Jin, a professor of chemistry at the University of Wisconsin-Madison, splits water into hydrogen and oxygen using a catalyst made of the abundant elements cobalt, phosphorus and sulfur.
Bathed in simulated sunlight, this photoelectrolysis cell in the lab of Song Jin, a professor of chemistry at the University of Wisconsin-Madison, splits water into hydrogen and oxygen using a catalyst made of the abundant elements cobalt, phosphorus and sulfur.
Hydrogen could be the ideal fuel: Whether used to make electricity in a fuel cell or burned to make heat, the only byproduct is water; there is no climate-altering carbon dioxide.
Like gasoline, hydrogen could also be used to store energy.
Hydrogen is usually produced by separating water with electrical power. And although the water supply is essentially limitless, a major roadblock to a future "hydrogen economy" is the need for platinum or other expensive noble metals in the water-splitting devices.
Noble metals resist oxidation and include many of the precious metals, such as platinum, palladium, iridium and gold.
"In the hydrogen evolution reaction, the whole game is coming up with inexpensive alternatives to platinum and the other noble metals," says Song Jin, a professor of chemistry at the University of Wisconsin-Madison.
In the online edition of Nature Materials that appears today, Jin's research team reports a hydrogen-making catalyst containing phosphorus and sulfur -- both common elements -- and cobalt, a metal that is 1,000 times cheaper than platinum.
Catalysts reduce the energy needed to start a chemical reaction. The new catalyst is almost as efficient as platinum and likely shows the highest catalytic performance among the non-noble metal catalysts reported so far, Jin reports.
The advance emerges from a long line of research in Jin's lab that has focused on the use of iron pyrite (fool's gold) and other inexpensive, abundant materials for energy transformation. Jin and his students Miguel Cabán-Acevedo and Michael Stone discovered the new high-performance catalyst by replacing iron to make cobalt pyrite, and then added phosphorus.
Although electricity is the usual energy source for splitting water into hydrogen and oxygen, "there is a lot of interest in using sunlight to split water directly," Jin says.
The new catalyst can also work with the energy from sunlight, Jin says. "We have demonstrated a proof-of-concept device for using this cobalt catalyst and solar energy to drive hydrogen generation, which also has the best reported efficiency for systems that rely only on inexpensive catalysts and materials to convert directly from sunlight to hydrogen."
Many researchers are looking to find a cheaper replacement for platinum, Jin says. "Because this new catalyst is so much better and so close to the performance of platinum, we immediately asked WARF (the Wisconsin Alumni Research Foundation) to file a provisional patent, which they did in just two weeks."
Many questions remain about a catalyst that has only been tested in the lab, Jin says. "One needs to consider the cost of the catalyst compared to the whole system. There's always a tradeoff: If you want to build the best electrolyzer, you still want to use platinum. If you are able to sacrifice a bit of performance and are more concerned about the cost and scalability, you may use this new cobalt catalyst."
Strategies to replace a significant portion of fossil fuels with renewable solar energy must be carried out on a huge scale if they are to affect the climate crisis, Jin says. "If you want to make a dent in the global warming problem, you have to think big. Whether we imagine making hydrogen from electricity, or directly from sunlight, we need square miles of devices to evolve that much hydrogen. And there might not be enough platinum to do that."
http://www.chem.info/news/2015/09/discovery-highly-efficient-catalyst-eases-way-hydrogen-economy

Wednesday, September 2, 2015

Solar cell absorbs high-energy light at 30-fold higher concentration than conventional cells

Solar cell absorbs high-energy light at 30-fold higher concentration than conventional cells

September 2, 2015 by Lynn Yarris
 
 By combining designer quantum dot light-emitters with spectrally matched photonic mirrors, a team of scientists with Berkeley Lab and the University of Illinois created solar cells that collect blue photons at 30 times the concentration of conventional solar cells, the highest luminescent concentration factor ever recorded. This breakthrough paves the way for the future development of low-cost solar cells that efficiently utilize the high-energy part of the solar spectrum.

Read more at: http://phys.org/news/2015-09-solar-cell-absorbs-high-energy-fold.html#jCp