Shining more light on solar panels
Solar
panels are the beacon of renewable energy, yet they are not getting as much
light as they could be. Joshua Pearce from Michigan Technological University
and a team from Queen's University in Canada have found a way to get more sun
to shine on the panels and crank up the output by 30 percent or more. The work
is published in the Institute of Electrical and Electronics Engineers (IEEE) Journal of Photovoltaics.
"We're looking at this from a systems perspective," Pearce
says, who is an associate professor of materials science and engineering and
electrical and computing engineering. He explains that the research focused on
the system rather than individual panels mostly because the current set up for
ground-mounted solar panel arrays is "wasting space."
The iconic flat-faced solar panels installed in large-scale utility solar
farms are spaced apart to prevent shading. As the sun shines on a photovoltaic
system, sending electricity into the grid, a fair amount of that potential
energy is lost as the light hits the ground between rows of panels. The
solution is simple, says Pearce: Fill the space with a reflector to bounce
sunlight back onto the panels.
Reflectors, or planar concentrators, are not widely used, however.
"Panels are usually warranted for 20 to 30 years,"
Pearce says, explaining the warranty only guarantees under certain
circumstances. "If you're putting more sunlight on the panel with a
reflector, you will have greater temperature swings and non-uniform
illumination, but simple optics makes wrong predictions on the effect."
Because of the uncertainty with potential hot spots, using
reflectors currently voids warranties for solar farm operators. Pearce and his co-authors,
found a way to predict the effects using bi-directional reflectance function,
or BDRF.
Although the phrase sounds like a nightmare from algebra class, it
is actually a set of math equations that people are used to seeing. BDRF is
often used in movies and videogames to create more life-like computer generated
imagery (CGI) characters and scenes. This works because BDRF equations describe
how light bounces off irregular surfaces and predicts how the light will
scatter, creating indirect brightening and shadows.
For their solar panel work, Pearce's team created a BDRF model
that could predict how much sunlight would bounce off a reflector and where it
would shine on the array. "Real surfaces do not necessarily behave like
perfect mirrors, even if they look like it," Pearce says. "So we
applied [BDRF] models to these materials, which scatter the light
instead."
By showing how the reflectors scatter light, the researchers
started to take the risk out of using reflectors with solar panels. But even
better, the reflectors greatly increase solar system output.
Shining
more light on solar panels
"The mathematics
behind this is complicated," Pearce says, explaining that the team wanted
to "validate the predictive model, so the solar industry could start using
our equations to design better solar farms."
So the team took their
model to the field and ran an experiment on Canada's Open Solar Outdoors
Testing Field in Kingston, Ontario. The results shined much more light on the
problem than predicted by others.
With standard panels,
not tilted at the optimum angle for the latitude, the increase in efficiency
reached 45 percent. Even with a panel optimally tilted, the efficiency
increased by 18 percent and simulations show it could be pushed to 30 percent
with better reflectors.
"We expend a lot of
blood, sweat and tears to make solar panels as efficient as possible,"
Pearce says. "We work so hard to get a fraction of a percent increase on
the module level; double digit returns on the systems level was relatively
easy.
Such a large increase of
efficiency at the system level then could greatly change how solar panels are
installed, and with the economic payback, it could even mean major retrofits
for existing solar farms.
"Solar farms are
already beating antiquated coal technology on cost all over the US,"
Pearce says. "There are more solar workers than coal workers now as both
in the U.S. and Canada, coal plants are being shut down for cheaper and more
environmentally-friendly solar. This just offers to sweeten the economic
returns for solar farm investors."
"The main goal here
was to hand the solar farm developers the data needed on a silver platter,
which they can then use to modify their farms and crank up their output and
revenue by about a third," Pearce says.
More information: Photovoltaic system performance enhancement with
non-tracking planar concentrators: Experimental results and BDRF based
modelling. Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th DOI:
10.1109/PVSC.2013.6744136
Provided by: Michigan
Technological UniversityRead more at: http://phys.org/news/2015-10-solar-panels.html#jCp
No comments:
Post a Comment