Create your own Electricity at Home -It's Easy













Electrician shows you step by step how top build your own solar cells for under $100. Easy to follow guide and videos. Cut your electric bills by 75% or more.



Click here to watch video

Monday, January 7, 2013

Unlocking nature's quantum engineering for efficient solar energy

(Phys.org)—Quantum scale photosynthesis in biological systems which inhabit extreme environments could hold key to new designs for solar energy and nanoscale devices. Certain biological systems living in low light environments have unique protein ...

Read more ,,,
structures for photosynthesis that use quantum dynamics to convert 100% of absorbed light into electrical charge, displaying astonishing efficiency that could lead to new understanding of renewable solar energy, suggests research published today in the journal Nature Physics.

Read more at: http://phys.org/news/2013-01-nature-quantum-efficient-solar-energy.html#jCp
Quantum scale photosynthesis in biological systems which inhabit extreme environments could hold key to new designs for solar energy and nanoscale devices. Certain biological systems living in low light environments have unique protein structures for photosynthesis that use quantum dynamics to convert 100% of absorbed light into electrical charge, displaying astonishing efficiency that could lead to new understanding of renewable solar energy, suggests research published today in the journal Nature Physics.

Read more at: http://phys.org/news/2013-01-nature-quantum-efficient-solar-energy.html#jCp
(Phys.org)—Quantum scale photosynthesis in biological systems which inhabit extreme environments could hold key to new designs for solar energy and nanoscale devices. Certain biological systems living in low light environments have unique protein structures for photosynthesis that use quantum dynamics to convert 100% of absorbed light into electrical charge, displaying astonishing efficiency that could lead to new understanding of renewable solar energy, suggests research published today in the journal Nature Physics.

Read more at: http://phys.org/news/2013-01-nature-quantum-efficient-solar-energy.html#jCp
(Phys.org)—Quantum scale photosynthesis in biological systems which inhabit extreme environments could hold key to new designs for solar energy and nanoscale devices. Certain biological systems living in low light environments have unique protein structures for photosynthesis that use quantum dynamics to convert 100% of absorbed light into electrical charge, displaying astonishing efficiency that could lead to new understanding of renewable solar energy, suggests research published today in the journal Nature Physics.

Read more at: http://phys.org/news/2013-01-nature-quantum-efficient-solar-energy.html#jCp
(Phys.org)—Quantum scale photosynthesis in biological systems which inhabit extreme environments could hold key to new designs for solar energy and nanoscale devices. Certain biological systems living in low light environments have unique protein structures for photosynthesis that use quantum dynamics to convert 100% of absorbed light into electrical charge, displaying astonishing efficiency that could lead to new understanding of renewable solar energy, suggests research published today in the journal Nature Physics.

Read more at: http://phys.org/news/2013-01-nature-quantum-efficient-solar-energy.html#jCp

(Phys.org)—Quantum scale photosynthesis in biological systems which inhabit extreme environments could hold key to new designs for solar energy and nanoscale devices. Certain biological systems living in low light environments have unique protein structures for photosynthesis that use quantum dynamics to convert 100% of absorbed light into electrical charge, displaying astonishing efficiency that could lead to new understanding of renewable solar energy, suggests research published today in the journal Nature Physics.

Read more at: http://phys.org/news/2013-01-nature-quantum-efficient-solar-energy.html#jCp
(Phys.org)—Quantum scale photosynthesis in biological systems which inhabit extreme environments could hold key to new designs for solar energy and nanoscale devices. Certain biological systems living in low light environments have unique protein structures for photosynthesis that use quantum dynamics to convert 100% of absorbed light into electrical charge, displaying astonishing efficiency that could lead to new understanding of renewable solar energy, suggests research published today in the journal Nature Physics.

Read more at: http://phys.org/news/2013-01-nature-quantum-efficient-solar-energy.html#jCp

No comments:

Post a Comment