Create your own Electricity at Home -It's Easy













Electrician shows you step by step how top build your own solar cells for under $100. Easy to follow guide and videos. Cut your electric bills by 75% or more.



Click here to watch video

Thursday, July 18, 2013

50% Solar Cell Efficiency?

1 Comment

solarpanel1
SUMMARY:
Is there a solar panel coming that can convert an unheard-of 50 percent of the suns light into electricity. Some early research indicates that yes, it’s possible, though it might take many more years to commercialize.
The summer sunshine is upon us, at least here on the East Coast, which means it’s the perfect time to think about how best to harness those golden rays for clean energy. The solar industry’s power players put their newest tech on display at last week’s Intersolar North America conference in San Francisco, despite the industry’s slightly depressed showing this year (see Ucilia Wang’s report from the trade show floor).
Nonetheless, despite these recent business shadows, there have been glimmers of research progress. At the conference Alta Devices, for example, presented technology that can boost solar cell efficiency to between 30 percent and an unprecedented 50 percent or more, using both materials and optical advances.
Best research photovoltaic cell efficiencies Rev. 06-2013
Best research photovoltaic cell efficiencies Rev. 06-2013
Besides the solar market slump, constraints imposed purely by physics have also been the bane of solar cell manufacturers. Many modern commercial cells hover around the 10-20 percent efficiency mark, and boosting efficiency is a major R&D focus for many companies. There are lots of reasons why solar cells can’t reach 100 percent efficiency: blackbody radiation (think of it as ambient energy evaporation), the PV materials used, and their capacity to accommodate electrons. Oddly, photons themselves can also be a roadblock to optimal efficiency.
Traditional solar cells can only collect one wavelength of light and are constrained by the Shockley-Queisser limit, which dictates that the maximum efficiency of an ideal solar cell can never exceed 33.7 percent. That’s because in traditional single-junction solar cells, the bandgap between two semiconductor materials defines how well the photons are converted into electrons within the cell. In this scenario, capturing photons whose energy is well-matched to the materials’ specific bandgapis crucial.
Alta Devices military 3
Fortunately, silicon and other semiconducting materials are pretty well-matched in their bandgaps to harness the sun’s natural spectral distribution. But spreading your photonic net across wavelengths could yield more energy-producing photons. That’s what multi-junction or tandem cells, like those from Alta Devices, aim to do.
In March, Alta Devices announced their solar cells had exceeded 30 percent efficiency, and at Intersolar last week founder and Caltech professor Harry Atwater outlined how the company plans to break the 50 percent efficiency barrier. Photon recycling and epitaxial lift-off (check out this earlier story for an explainer) are the two main factors distinguishing Alta’s cells, whose super thin gallium arsenide films are currently more efficient than traditional PV materials like silicon. They are, however, also more expensive, and may thus best serve niche markets where performance requirements trump cost. Alta is focusing on mobile deployments of its tech, from unmanned aerial vehicles to transportable solar arrays.
Alta Devices CEO Chris Norris shows a sample of solar cells. According to Atwater, simulations indicate that efficiencies in multi-junction cells can continue to increase, provided the structure of the cells is appropriately tweaked. The stacking of thin film layers and using tuned materials to cover the entire wavelength spectrum are some of the main considerations. By iterating and improving the PV design over these parameters, efficiencies of 50 percent or greater should be achievable.
Spectrum splitting – using optical methods to reflect and redirect incident light to appropriate layers – and using lenses or mirrors as concentrators are two accessory ways to further improve solar efficiency that Alta and others are pursuing. With light concentrators, the argument is that fewer solar cells are then needed, leading to potential cost and area savings. The snag is that you need a device, like the QBotix robot, to track the sun, and you need to funnel the energy of hundreds of suns into the system. Companies that use solar concentrators, like Solar Junction, have achieved over 40 percent efficiency with their cells in this way.
The future for solar efficiency is thus bright, in theory, but materials costs and technical hurdles related to manufacturing intricate multi-junction cells may keep these advances from being fully realized for the time being.